3.502 \(\int \frac{1}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=109 \[ -\frac{2 b \left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac{b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac{x}{a^2} \]

[Out]

x/a^2 - (2*b*(2*a^2 - b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*(a - b)^(3/2)*(a + b)^(3/
2)*d) + (b^2*Tan[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.168731, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.417, Rules used = {3785, 3919, 3831, 2659, 208} \[ -\frac{2 b \left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac{b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac{x}{a^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(-2),x]

[Out]

x/a^2 - (2*b*(2*a^2 - b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*(a - b)^(3/2)*(a + b)^(3/
2)*d) + (b^2*Tan[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 3785

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n +
 1))/(a*d*(n + 1)*(a^2 - b^2)), x] + Dist[1/(a*(n + 1)*(a^2 - b^2)), Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^
2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \sec (c+d x))^2} \, dx &=\frac{b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\int \frac{-a^2+b^2+a b \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{x}{a^2}+\frac{b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\left (b \left (2 a^2-b^2\right )\right ) \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac{x}{a^2}+\frac{b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\left (2 a^2-b^2\right ) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac{x}{a^2}+\frac{b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\left (2 \left (2 a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 \left (a^2-b^2\right ) d}\\ &=\frac{x}{a^2}-\frac{2 b \left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 (a-b)^{3/2} (a+b)^{3/2} d}+\frac{b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.441932, size = 138, normalized size = 1.27 \[ \frac{\frac{b \left (\left (a^2-b^2\right ) (c+d x)+a b \sin (c+d x)\right )+a \left (a^2-b^2\right ) (c+d x) \cos (c+d x)}{a \cos (c+d x)+b}-\frac{2 b \left (b^2-2 a^2\right ) \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}}{a^2 d (a-b) (a+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^(-2),x]

[Out]

((-2*b*(-2*a^2 + b^2)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + (a*(a^2 - b^2)*(
c + d*x)*Cos[c + d*x] + b*((a^2 - b^2)*(c + d*x) + a*b*Sin[c + d*x]))/(b + a*Cos[c + d*x]))/(a^2*(a - b)*(a +
b)*d)

________________________________________________________________________________________

Maple [B]  time = 0.061, size = 204, normalized size = 1.9 \begin{align*} 2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{a}^{2}}}-2\,{\frac{{b}^{2}\tan \left ( 1/2\,dx+c/2 \right ) }{da \left ({a}^{2}-{b}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a-b \right ) }}-4\,{\frac{b}{d \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+2\,{\frac{{b}^{3}}{d{a}^{2} \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sec(d*x+c))^2,x)

[Out]

2/d/a^2*arctan(tan(1/2*d*x+1/2*c))-2/d*b^2/a/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+
1/2*c)^2*b-a-b)-4/d*b/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))+2/
d*b^3/a^2/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.91523, size = 1053, normalized size = 9.66 \begin{align*} \left [\frac{2 \,{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x \cos \left (d x + c\right ) + 2 \,{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x +{\left (2 \, a^{2} b^{2} - b^{4} +{\left (2 \, a^{3} b - a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{a^{2} - b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + 2 \,{\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \cos \left (d x + c\right ) +{\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d\right )}}, \frac{{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x \cos \left (d x + c\right ) +{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x -{\left (2 \, a^{2} b^{2} - b^{4} +{\left (2 \, a^{3} b - a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) +{\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \cos \left (d x + c\right ) +{\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(2*(a^5 - 2*a^3*b^2 + a*b^4)*d*x*cos(d*x + c) + 2*(a^4*b - 2*a^2*b^3 + b^5)*d*x + (2*a^2*b^2 - b^4 + (2*a
^3*b - a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^
2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) + 2
*(a^3*b^2 - a*b^4)*sin(d*x + c))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d
), ((a^5 - 2*a^3*b^2 + a*b^4)*d*x*cos(d*x + c) + (a^4*b - 2*a^2*b^3 + b^5)*d*x - (2*a^2*b^2 - b^4 + (2*a^3*b -
 a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c)
)) + (a^3*b^2 - a*b^4)*sin(d*x + c))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^
5)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \sec{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a + b*sec(c + d*x))**(-2), x)

________________________________________________________________________________________

Giac [A]  time = 1.16389, size = 242, normalized size = 2.22 \begin{align*} -\frac{\frac{2 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{3} - a b^{2}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a - b\right )}} + \frac{2 \,{\left (2 \, a^{2} b - b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{4} - a^{2} b^{2}\right )} \sqrt{-a^{2} + b^{2}}} - \frac{d x + c}{a^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

-(2*b^2*tan(1/2*d*x + 1/2*c)/((a^3 - a*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)) + 2
*(2*a^2*b - b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1
/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^4 - a^2*b^2)*sqrt(-a^2 + b^2)) - (d*x + c)/a^2)/d